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Two concepts are presented for accurate nonequilibrium work free-energy measurements, realized both in
molecular simulation and experiment. First, the need for an intermediate important to both the reference and
the target systems(overlap) is indicated. Second, the use of a soft path from each end point to the intermediate
(funnel) is demonstrated. Schemes implementing these concepts dramatically improve efficiency and accuracy
of free energy calculations, as shown by calculation of the free energy of ion charging in water, and the free
energy change in mutation of an adenosine molecule.
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Free energy is a key quantity for characterizing and mod-
eling chemical, physical, and biological behavior, and conse-
quently the measurement of free energies—by molecular
simulation or experiment—is of great importance to science
and technology. Yet, the design of robust and efficient meth-
ods for free energy measurement remains a “grand chal-
lenge” problem in molecular simulation[1], this despite de-
cades of development and application. Experimental
measurements of free energies for molecular-scale processes
have, on the other hand, emerged only recently[2], spurred
largely by advances in the formulation of nonequilibrium
methods[3]. Their practice is also problematic, and attempts
are now being made to understand and thereby improve them
[4].

The goal of free-energy measurement is to determine the
free energy differenceDF between two systemsA and B
sDF;FB−FAd. The main difficulty arises from the tendency
of a measurement to exhibit large(many timeskT) system-
atic error or bias. Usually the error is reproducible, so the
standard error measures—which gauge precision, not
accuracy—do not hint at the problem. Even bootstrap meth-
ods, which do target inaccuracies, are not effective[5]. The
only sure way to uncover the error is to measure the same
DF using different algorithms or protocols, and examine the
consistency of the results. Discrepancies are remedied by
applying sufficient effort(e.g., computation) to remove the
inconsistencies, or by applying unjustified heuristics, such as
averaging the differing results. Such practices can be ineffi-
cient or unreliable.

Recently, in the context of free-energy perturbation(FEP)
methods[6], we have shown how a proper conception of the
nature of the measurement and the mechanism causing inac-
curacy can guide one to apply methods that are much less
prone to systematic error[7–9]. A key point is the consider-
ation of the phase-space relations of theA and B systems,
which leads to the notion of overlap sampling as an effective
strategy for conducting staged FEP calculations[5,10]. The
same conceptual basis can be applied to improve the more

general class of work-based free-energy methods, in both
their experimental and computational realizations. There is
one rule to follow: the nonequilibrium path must proceed
“down the funnel,” that is, the sequence of systems traversed
in the measurement must be successive phase-space subsets.
Two general problems arise in connection with this require-
ment. First, it may be that the systems of interest have only
partial overlap, and one is not a subset of the other in phase
space; second, the systems may relate more as a pinhole than
a funnel, meaning that one may be an extremely small phase-
space subset of the other. This report lays out these concepts
and presents general protocols to address them. We show that
the former problem is addressed by overlap sampling, and
the latter by funnel sampling. First, some more background.

The general formulation of work-based non-equilibrium
free-energy calculation methods was presented by Jarzynski
[3] and further developed by Crooks[11]. Jarzynski estab-
lished an equality between the equilibrium free energy dif-
ference and the Boltzmann-weighted ensemble average of
nonequilibrium(finite-time) work sWd for the switching from
A to B along a path at a finite rate:

exps− b D Fd = kexps− bWA→BdlA, s1d

whereb=1/kT is the reciprocal temperature, and the angle
brackets indicate an ensemble average over initial configura-
tions of the equilibratedA system. The method based on Eq.
(1)—referred to here as the nonequilibrium work(NEW)—is
remarkably versatile[3]: it can be adapted to a broad range
of simulations, including adiabatic and isothermal molecular
dynamics simulations, Monte Carlo simulations, and experi-
mental studies of molecular-scale systems[2]. In addition,
the NEW generalizes several well-established free-energy
methods, thereby unifying them, and presents avenues to fol-
low for the development of new calculation techniques. FEP
is found as a limiting case of NEW, in which the switching
from A to B is instantaneous, while the other limiting case
arises when the process occurs reversibly:DF=WA→B

rev . The
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NEW method suffers from certain limitations common to
FEP, and if used improperly it too will provide results that
are systematically incorrect[3]. In particular, since the en-
semble averaging of Eq.(1) involves a nonlinear quantity in
the exponential, these systematic errors can be viewed as a
form of sampling that is very sensitive to the tails of the
distribution [4,8,12].

Consider the classical phase spaceG [13] occupied by the
A andB systems. The contribution of each phase-space point
Gi to the partition function is Boltzmann-weighted according
to its energyEsGid. We refer to thoseGi having significant
contributions to the partition function as the “important”
phase space regions(denotedG*) of a system. We can define
Gi PG* if EsGid is less than a characteristic energy, e.g., the
most-likely energy, or the average energy for the system[8].
Each system has its own set of important molecular configu-
rations (GA

* and GB
*), which are sampled in a simulation

governed by the system, and the differences between the
systems typically cause their preferred configurations to dif-
fer.

The four ways thatGA
* and GB

* can relate[9] are illus-
trated in Fig. 1:(a) coincident,(b) partial overlap,(c) no
overlap, or(d) subset. We note that in general(a) and(d) are
the only cases in which a simple(single-stage) FEP calcula-
tion will produce an accurate result[7–9]. An analogous ar-
gument can be made in connection with the NEW calcula-
tion. Let us define a parameterg(gP f0,1g ,g=0 and 1 for
the A and B systems, respectively) that describes progress
along the pathA→B, such that for a particular value ofg the
energy at phase-space pointGi is EgsGid, and the set of im-
portant configurations for the system defined byg is denoted
Gg

* . As the system steps fromgn to gn+1, the same issue
arises as with FEP[7–9]. Any parts ofGgn+1

* outside ofGgn

*

are rarely(if ever) sampled, yet if they were encountered
they would make a large, negative contribution toWA→B, and
thus a significant contribution to the NEW average. If such
points exist, the failure to sample them introduces inaccuracy
in the calculated free energy. The conclusion is that for an

accurate result, the sequence of systems traversed in a NEW
calculation must proceed such thateachsuccessive system
obeys a phase-space subset relation with the ones that pre-
cede it. Adopting a term from the protein-folding literature
[14] describing a related concept, we say that a path follow-
ing such a trajectory moves “down the funnel.” The funnel
requirement is attenuated to the degree that the path ap-
proaches reversibility. For a reversible pathg is incremented
differentially, and the phase-space relation for adjacent val-
ues ofg will look more similar to that depicted in Fig. 1(a).
In this manner it is possible to go fromA to B even if these
end states relate as in Figs. 1(b) or 1(c). If the path is not
traversed reversibly, then it is necessary thatA andB relate
as in Fig. 1(d) in order for the subset relation to be satisfied
all along the pathA→B.

The definitions for systemsA and B are typically set by
the context of the problem motivating the free energy mea-
surement, thus they cannot readily be selected to ensure that
the phase-space subset relation can be satisfied. This problem
may be overcome by setting up the calculation in stages
[7,15], defining one or more intermediate system(s) (desig-
natedM) and computingDFAB as the sum of, e.g.,DFAM
(defined asFM −FA) andDFMB. The foregoing considerations
prescribe the selection ofM: it must obey a subset relation
with both A and B (for simplicity here we assume the case
requiring only a single intermediateM). Such anM can be
formulated in two ways. One is to define theM such that
GM

* “contains” bothGA
* andGB

* ; this is the umbrella sam-
pling technique[16] in the context of FEP. The other, overlap
sampling(OS) [5,10,17], definesM so thatGM

* is a subset of
bothGA

* andGB
* simultaneously(i.e., a subset of the overlap

region). The OS method requiresA and B to satisfy the
partial-overlap relation[see Fig. 1(b)]. This relationship is
common in many free energy problems, and if not, higher-
order staging methods can be formulated using similar con-
siderations. These staging methods have been formulated and
studied in the context of FEP, and we note that they apply
equally well in the context of the more general NEW. Here,
we consider the OS staging method because certain features
of its implementation make it better suited for the calcula-
tion. In the OS method, the free energy formula is

e−bDF =
ke−bWA→MlA

ke−bWB→MlB
. s2d

Equation(2) indicates two separate simulations starting with
equilibratedA andB systems, respectively, and proceeding to
a common destination, the systemM.

Now we proceed with the construction of the intermediate
M and the switching paths taken toM from A andB. Bennett
[17] considered the formulation of an optimalM for an OS
calculation(for FEP), but he did not present it this way. His
“acceptance ratio” perspective instead considered the best
way to combine separate FEP calculationsA→B and B
→A, and not on finding a free-energy staging intermediate.
The different perspectives on Bennett’s method lead to dif-
ferent implementations when it is generalized to NEW cal-
culations. Following Bennett, Crooks[18] proposed a corre-
sponding formula to blend NEW calculations fromA to B

FIG. 1. Schematic depiction of four ways that important phase
space regions(indicated by ovals) of two systems can relate:(a)
coincidence, both spaces are roughly the same;(b) partial overlap;
(c) no overlap;(d) subset.
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and back. Crooks’ “generalized acceptance ratio” makes no
statement regarding the path taken betweenA andB. In con-
trast, in the OS perspective, the path must pass through an
intermediateM, which we wish to define consistently with
Bennett’s(implicitly defined) M. To this end, we propose the
following path between theA andB systems:

e−bEg = fs1 − gde+bEA + ge+bEBg−1. s3d

For g=0,1 we recover systemsA and B, respectively. At
intermediateg, configurations important toboth AandB are
increasingly important. Thus for a suitably choseng, defin-
ing the intermediateM, we should expect the path fromA
and B to M will proceed down a funnel. If we adopt Ben-
nett’s prescription for an intermediate, then the optimalg
will satisfy

g* /s1 − g*d = exps− b D Fd. s4d

Equations (2)–(4) complete the NEW-OS method,
whereby the free energy differenceDF can be obtained by
solving these equations self-consistently using the following
procedure. Perform NEW calculations fromA to B (g=0
→1 with a predefined set ofhgij) and separately fromB to A
(using the samehgij but in reverse) following paths defined
by Eq. (3); for each switch, record the partial work values at
each point ofg along the path; compute ensemble averages
and thusDFg using Eq.(2); finally, select theg (therefore
DF) satisfying Eq.(4).

Thus the OS formulation assures that each element of the
overall free-energy difference calculation is formed as a fun-
nel sampling(FS) calculation. The second consideration is
the shape of the funnel, which focuses on the paths taken
from A andB to M. A “pinhole” funnel is unlikely to provide
good results, because most contributions to the averages in
Eq. (2) are near zero, except for those rare instances in which
the A sor Bd→M transition happens to start in theGM

* re-
gion. The path should provide a smooth, broad funnel-like
transition fromA andB to M. Within this picture the perfor-
mance of the calculation is affected by many variables, so it
is difficult to develop a general, “optimal” result of the type
presented by Bennett. Instead we propose one possible ap-
proach, with the idea that future effort can focus on improv-
ing even more this aspect of the calculation. In particular, we
modify the Bennett-inspired finite-time switching path as fol-
lows:

e−bEg = e−bEAfs1 − gd + ge+asEB−EAd−Dg−b/a. s5d

The parametera affects the softness of the transition fromA
and B to M. We find that a reasonable choice for its value
causesasEB−EAd to be of order unity for typical values of
sEB−EAd when sampling theA or B systems. This causes the
weight [Eq. (5)] to decay over a broader range ofg for en-
ergies of this magnitude. Note thata is a fixed parameter,
and does not change with the configuration or withg. One
disadvantage in this modification is the loss of the rigorously
optimized Bennett’s intermediate, which is no longer en-
countered in this path. Nevertheless, we retain Eq.(4) as the
criterion for selecting the value ofg that definesM. Also in
this version we have introduced a parameterD, which is a

constant and is added for convenience of the calculation. It
can be used to ensure that the optimalg is found at a rea-
sonable distance from the values 0 or 1. Otherwise it is likely
(for large DF) that the work path will jump overg* in the
first step, making its identification difficult. IfD is selected
to be equal tobDF, then the optimalg is [using a modifi-
cation of Eq.(4)] 0.5.

We demonstrate with two calculations: the first measures
the free-energy change associated with charging an ion
within SPC water, and the second measures the free-energy
change between two alchemical states of an adenosine mol-
ecule in aqueous solution. In the charging simulation, theA
system consists of a single Lennard-Jones atom with charge
of +1 e in a system of 216 SPC water molecules at 298 K
and 1 g/cm3, and theB system is the same but with no charge
on the solute atom. All interactions are truncated at a dis-
tance of 9 Å and no additional treatment is applied for long-
range electrostatic interactions. The free energy differences
are calculated using four methods: NEWA→B and B→A
each by themselves, Crooks’ generalized acceptance ratio,
and the proposed algorithm witha=10−3b. All calculations
follow the same path[Eq. (5)] and are based on a common
set of data, so the same amount of simulation is applied for
all methods. The correct value for this free-energy difference
(as given by equilibrium-work calculations using molecular
dynamics simulation[19]) is 420.81±0.3 J/mol. For such a
large DF, the parameterD must be selected to be within a
few percent of the actual free energy, or else the optimalg is
too close to 0 or 1 to be identifiable. Free energy results are
shown in Fig. 2, where the difference from the literature
value is plotted as a function of the amount of sampling
performed in the simulation[20]. The proposed method
yields impressive results, with convergence observed very
early in the simulation. In contrast, the other methods display
a systematic error that shows little sign of improvement over
the course of the calculations. The failure of the generalized
acceptance ratio method indicates that minimization of the
statistical error is not sufficient for a reliable free energy
calculation, and that consideration of phase space
sampling—which is a built-in feature of OS—is a key com-
ponent for an optimal calculation.

FIG. 2. Error in free energy measured by several NEW imple-
mentations[20].
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The DF calculated for mutation of adenosine was mea-
sured with the paths of Eq.(3) (details for the simulation
setup are in Ref.[5]). The result from the NEW-OS method
matches the correctDF of 35.3 kJ/mol, while the separate
forward and reverse NEW give values of 38.1 and 29.9
kJ/mol, respectively. With work values sampled along the
paths defined by Eq.(3), the acceptance-ratio implementa-
tion gives result comparable to that by NEW-OS, but it
yields 34.7 kJ/mol when employing a conventional sampling
path.

To summarize, a reliable work-based free-energy mea-
surement requires barrier-free sampling of important phase
space regions, and systematic errors due to inappropriate
sampling, if not prevented in the first place, cannot be easily
overcome afterwards. For each step of the calculation, the
reference and target systems should obey a subset relation
for their important phase space, and the work should accom-
pany a path that satisfies the subset criterion along its entire
length. The OS and FS techniques presented in this report
provide a general approach to meet these criteria.

Concepts presented here have concentrated on molecular

simulation, but they may also be applied to advantage in
experimental realizations of NEW methods[2]. The OS idea
in particular can be implemented experimentally by appro-
priately combining work calculations from theA andB sys-
tems to a suitably chosen intermediate. This practice cannot
be followed to the detail permitted in simulation[i.e., pre-
cisely according to Eq.(3)], but it may be sufficiently helpful
to adhere only to a reformulation of Eq.(4) appropriate to
the system. Otherwise this step can be taken immediately,
and requires no redesign of the experiments except to ensure
that the NEW averages are recorded throughout the path. At
a minimum, it should be standard practice to combine the
forward and reverse results according to the acceptance-ratio
formulation presented by Crooks.

We acknowledge financial support from the U.S. Depart-
ment of Energy, Office of Basic Energy Sciences(to D.A.K.)
and both Grant No. RSG0104801GM from the American
Cancer Society and Grant No. R01GM064746 from the NIH
(to T.B.W.). Computing resources were provided by the Uni-
versity at Buffalo Center for Computational Research.

[1] A. R. Leach,Molecular Modeling: Principles and Applications
(Prentice Hall, New York, 2001).

[2] G. Hummer and A. Szabo, Proc. Natl. Acad. Sci. U.S.A.98,
3658 (2001); T. Hugel and M. Seitz, Macromol. Rapid
Commun. 22, 989 (2001); J. Liphardt, S. Dumont, S. B.
Smith, I. Tinoco, and C. Bustamante, Science296, 1832
(2002); R. Lavery, A. Lebrun, J. F. Allemand, D. Bensimon,
and V. Croquette, J. Phys.: Condens. Matter14, R383(2002).

[3] C. Jarzynski, Phys. Rev. Lett.78, 2690 (1997); C. Jarzynski,
Phys. Rev. E56, 5018(1997).

[4] J. Gore, F. Ritort, and C. Bustamante, Proc. Natl. Acad. Sci.
U.S.A. 100, 12 564(2003).

[5] N. D. Lu, D. A. Kofke, and T. B. Woolf, J. Comput. Chem.25,
28 (2004).

[6] D. Frenkel and B. Smit,Understanding Molecular Simulation:
From Algorithms to Applications, 2nd ed.(Academic, New
York, 2002).

[7] D. A. Kofke and P. T. Cummings, Mol. Phys.92, 973 (1997).
[8] N. D. Lu and D. A. Kofke, J. Chem. Phys.114, 7303(2001);

N. D. Lu and D. A. Kofke,ibid. 115, 6866(2001).
[9] D. A. Kofke, Mol. Phys.(to be published).

[10] N. D. Lu, J. K. Singh, and D. A. Kofke, J. Chem. Phys.118,
2977 (2003).

[11] G. E. Crooks, J. Stat. Phys.90, 1481 (1998); G. E. Crooks,

Phys. Rev. E60, 2721(1999).
[12] D. M. Zuckerman and T. B. Woolf, Chem. Phys. Lett.351,

445 (2002); D. M. Zuckerman and T. B. Woolf, Phys. Rev.
Lett. 89, 180602(2002); D. M. Zuckerman and T. B. Woolf, J.
Stat. Phys.114, 1303 (2004); N. Lu, D. A. Kofke, and J.
Adhikari, Phys. Rev. E68, 026122(2003).

[13] J. P. Hansen and I. R. McDonald,Theory of Simple Liquids
(Academic Press, New York, 1986).

[14] P. G. Wolynes, J. N. Onuchic, and D. Thirumalai, Science267,
1619 (1995).

[15] J. P. Valleau and D. N. Card, J. Chem. Phys.57, 5457(1972);
R. J. Radmer and P. A. Kollman, J. Comput. Chem.18, 902
(1997).

[16] G. M. Torrie and J. P. Valleau, J. Comput. Phys.23, 187
(1977).

[17] C. H. Bennett, J. Comput. Phys.22, 245 (1976).
[18] G. E. Crooks, Phys. Rev. E61, 2361(2000).
[19] T. P. Straatsma and H. J. C. Berendsen, J. Chem. Phys.89,

5876 (1988).
[20] A “work cycle” consists of 100 nonuniform steps ing from 0

to 1 and back(100 each way). One simulation sweep(N MC
trials) is performed after each step ing and 1000 equilibration
sweeps are conducted after reaching each endpoint, before be-
ginning the next work half cycle.

BRIEF REPORTS PHYSICAL REVIEW E69, 057702(2004)

057702-4


